RDF Graph Measures for the Analysis of RDF Graphs

Home / Government / business-data-gov-uk

business-data-gov-uk

Data and Resources

Measures

Notation Description Value
m graph volume (no. of edges) 8,606
n graph size (no. of vertices) 3,684
dmax max degree 373
d+max max in-degree 373
d-max max out-degree 117
z mean total degree 4.672
h+
h-index, respecting in-degree
Known from citation networks, this measure is an indicator for the importance of a vertex in the graph, similar to a centrality measure. A value of h means that for the number of h vertices the degree of these vertices is greater or equal to h. A high value of h could be an indicator for a "dense" graph and that its vertices are more "prestigious". The value is computed by respecting the in-degree distribution of the graph, denoted as h+.
23
h h-index, respecting total degree 37
pmu fill, respecting unique edges only 0.001
p fill, respecting overall edges 0.001
mp
Effective measure!Score: 0.045

Datasets in this domain can be very well described by means of this particular measure.

parallel edges
Based on the measure mu, this is the number of parallel edges, i.e., the total number of edges that share the same pair of source and target vertices. It is computed by subtracting mu from the total number of edges m, i.e. mp = m – mu.
1,143
mu
unique edges
In RDF, a pair of subject and object resources may be described with more than one predicate. Hence, in the graphs, there may exist a fraction of all edges that share the same pair of (subject and object) vertices. The value for mu represents the total number of edges without counting these multiple edges between a pair of vertices.
7,463
y reciprocity 0
δ
diameter (approximated)
The diameter is the longest shortest path between a pair of two vertices in the graph (as there can be more than one path for the pair of vertices). As this requires all possible paths to be computed, this is a very computational intensive measure. We used the pseudo_diameter-algorithm provided by graph-tool, which is an approximation method for the diameter of the graph. As the graph can have many components, this algorithm very often returns the value of 1. If this should be the case for this graph, we compute the diameter for the largest connecting component.
2
PR max pagerank value 0.002
Cd+ max in-degree centrality 0.101
Cd- max out-degree centrality 0.032
Cd max degree centrality 0.101
α powerlaw exponent, degree distribution 2.777
dminα dmin for α 23
α+ powerlaw exponent, in-degree distribution 2.725
dminα+ dmin for α+ 4
σ+ standard deviation, in-degree distribution 12.181
σ- standard deviation, out-degree distribution 7.312
cv+ coefficient variation, in-degree distribution 521.421
cv-
Effective measure!Score: 0.047

Datasets in this domain can be very well described by means of this particular measure.

coefficient variation, out-degree distribution 312.999
σ2+ variance, in-degree distribution 148.368
σ2- variance, out-degree distribution 53.462
C+d graph centralization 0.1
z- mean out-degree 14.415
$$deg^{--}(G)$$ max partial out-degree 22
$$\overline{deg^{--}}(G)$$ mean partial out-degree 1.24
$$deg^-_L(G)$$
Effective measure!Score: 0.099

Datasets in this domain can be very well described by means of this particular measure.

max labelled out-degree 22
$$\overline{deg^-_L}(G)$$ mean labelled out-degree 11.626
$$deg^-_D(G)$$ max direct out-degree 89
$$\overline{deg^-_D}(G)$$ mean direct out-degree 12.501
z+ mean in-degree 2.601
$$deg^{++}(G)$$ max partial in-degree 373
$$\overline{deg^{++}}(G)$$ mean partial in-degree 1.956
$$deg^+_L(G)$$ max labelled in-degree 5
$$\overline{deg^+_L}(G)$$ mean labelled in-degree 1.329
$$deg^+_D(G)$$ max direct in-degree 373
$$\overline{deg^+_D}(G)$$
Effective measure!Score: 0.128

Datasets in this domain can be very well described by means of this particular measure.

mean direct in-degree 2.255
$$deg_P(G)$$ max predicate degree 763
$$\overline{deg_P}(G)$$ mean predicate degree 358.583
$$deg^+_P(G)$$ max predicate in-degree 597
$$\overline{deg^+_P}(G)$$ mean predicate in-degree 289.208
$$deg^-_P(G)$$ max predicate out-degree 457
$$\overline{deg^-_P}(G)$$ mean predicate out-degree 183.292
$$\propto_{s-o}(G)$$ subject-object ratio 0.06
$$r_L(G)$$ ratio of repreated predicate lists 0.75
$$deg_{PL}(G)$$
Effective measure!Score: 0.047

Datasets in this domain can be very well described by means of this particular measure.

max predicate list degree 210
$$\overline{deg_{PL}}(G)$$
Effective measure!Score: 0.129

Datasets in this domain can be very well described by means of this particular measure.

mean predicate list degree 4.007
$$C_G$$
Effective measure!Score: 0.06

Datasets in this domain can be very well described by means of this particular measure.

distinct classes 2
$$S^C_G$$ all different typed subjects 597
$$r_T(G)$$ ratio of typed subjects 1

Plots

Degree distribution shown here
In-degree distribution shown here
Last update of this page: 25 March 2020 13:38:38 CET