PropertyValue
?:about
?:abstract
  • Personality can be described at different levels of abstraction. Whereas the Big Five domains are the dominant level of analysis, several researchers have called for more fine-grained approaches, such as facet-level analysis. Personality facets allow more comprehensive descriptions, more accurate predictions of outcomes, and a better understanding of the mechanisms underlying trait–outcome relationships. However, several methodological issues plague existing evidence on the added value of facet-level descriptions: Manifest facet scale scores differ with respect to their reliability, domain-level variance (variance that is due to the domain factor) and incremental facet-level variance (variance that is specific to a facet and not shared with the other facets). Moreover, manifest scale scores overlap substantially, which affects associations with criterion variables. We suggest a structural equation modelling approach that allows domain-level variance to be separated from incremental facet-level variance. We analysed data from a heterogeneous sample of adults in the USA (N = 1193) who completed the 60-item Big Five Inventory-2. The results illustrate how the variance of manifest personality items and scale scores can be decomposed into domain-level and incremental facet-level variance. The association with criterion variables (educational attainment, income, health, and life satisfaction) further demonstrates the incremental predictive power of personality facets. (xsd:string)
?:contributor
?:dateModified
  • 2021 (xsd:gyear)
?:datePublished
  • 2021 (xsd:gyear)
?:doi
  • 10.1002/per.2268 ()
?:duplicate
?:hasFulltext
  • true (xsd:boolean)
is ?:hasPart of
?:inLanguage
  • en (xsd:string)
?:isPartOf
?:issn
  • 1099-0984 ()
?:issueNumber
  • 1 (xsd:string)
?:linksDOI
?:linksURN
is ?:mainEntity of
?:name
  • Modelling the incremental value of personality facets: the domains-incremental facets-acquiescence bifactor showmodel (xsd:string)
?:provider
?:publicationType
  • Zeitschriftenartikel (xsd:string)
  • journal_article (en)
?:reference
?:sourceInfo
  • GESIS-SSOAR (xsd:string)
  • In: European Journal of Personality, 35, 2021, 1, 67-84 (xsd:string)
rdf:type
?:url
?:urn
  • urn:nbn:de:0168-ssoar-74897-4 ()
?:volumeNumber
  • 35 (xsd:string)