nif:isString
|
-
This study has been registered in PROSPERO international prospective register of systematic review (CRD42018097473). The inclusion criteria were based on the PICOS framework: (i) population: female breast cancer patients; (ii) intervention: any form of clinical treatment interventions; (iii) comparator: not restricted; (iv) outcome: direct medical treatment costs (inpatient and outpatient) by stage incurred in hospital settings at the patient level; and (v) study design: costing studies with primary data. We excluded studies with the following characteristics: (i) no treatment cost estimates by stage; (ii) treatment costs not incurred in hospital settings which cannot reflect direct medical costs (inpatient and outpatient); (iii) costs not estimated from actual patient level data, but calculated according to treatment pathways in clinical guidelines; (iv) disease stages categorised neither as 0, I, II, III and IV in the International Federation of Gynaecology and Obstetrics (FIGO) staging system, nor as in situ, local, regional and distant cancer; and (v) review articles. Only studies that had primary data on the breast cancer costs were selected to avoid repeating previously published information. There was no language limit for the eligibility criteria.
We searched MEDLINE(R) (1946 to April Week 4 2018), EMBASE Classic + EMBASE (1947 to 30 April 2018), and NHS Economic Evaluation Database (NHS EED, 1960 to April 2018) with search terms in S1 Table. Also, reference lists from relevant primary studies and review articles were used to identify other relevant publications. Titles and abstracts were first reviewed, and full-texts of the studies that potentially met the eligibility criteria were retrieved and full-text reviewed.
Two investigators independently extracted the study characteristics and treatment costs of breast cancer by stage at diagnosis. Most studies conducted cost analyses up to a specified time rather than over a lifetime horizon. Although some studies reported the annual costs, we extracted the cumulative costs during the pre-specified time horizons for comparative purposes. We first summarised the cumulative treatment costs of breast cancer patients by stage in all reviewed studies. Then we compared the costs in studies with the same pre-specified time horizons. We used US dollars with the base year of 2015 to facilitate the comparison of costs. In this study, we used purchasing power parity (PPP) conversion factor to convert cost estimates reported in different currencies to US dollars, and used the consumer price index (CPI) for health care to convert cost estimates reported at different time points to the same year. PPP is the rate of currency conversion at which a given amount of currency will purchase the same volume of goods and services in two countries. CPI is a measure that examines the changes in the price level of a basket of consumer goods and services.
Critical appraisal and methodological assessment: Two investigators used an established checklist by Drummond et al. [9] to assess the quality of reviewed studies independently. Items not applicable to costing studies were removed. A three-point response scale was added to better grade the quality of each item on the checklist, ranging from 0 (not considered), through 1 (partially considered), to 2 (fully considered) [10]. We summed up all scores and compared this with the maximum attainable score to calculate the percentage of the maximum attainable score. In addition, we conducted a more detailed analysis of the methods used, including whether costs were based on charges or claims, the data collection approaches, use of control groups, descriptive analysis of mean costs by stage, regression model choices, censored data analysis, missing data analysis, and timing issues. We distinguished between whether charges or claims were used because charges are often higher than the insurer claim costs [8], though either of which does not necessarily reflect the true economic costs of providing the medical services. Costing data collection methods should depend on the aim of the study and the availability of data [11]. One method is the ingredient approach, also called micro-costing, with resources and the associated unit costs directly measured. At the other end of the spectrum is the gross costing or top-down method. In this approach, the costs are usually estimated by reference costs from a non-patient-specific source [12]. Gross costing is faster and cheaper but may lead to low accuracy because of the relatively large measurement units. Micro-costing is more reliable but may be expensive and not always practical [11]. Non-breast cancer controls were included in some studies. The costs among patients often incorporate some costs incurred jointly with other diseases or interventions, leading to the overestimation of the disease-specific costs. By comparing costs of breast cancer cases to control groups without breast cancer, breast cancer-attributable treatment costs can be estimated. Description of mean costs by stage was reported in all studies. Some presented only point estimates, while others also reported the uncertainty of mean values, such as standard errors and confidence intervals. Different regression models have been developed for cost modelling to approach the issues of cost data, such as the skewness, zero-values, and censoring [13]. In general, in cases of no censoring and no zero-costs, the log-gamma generalised linear model (GLM) is favoured, which deals with non-normality and avoids back-transformation issues [14]. Regarding the zero-cost issues, the two-part mixed model is the most informative by showing the possibility of any expenditure first. For the censoring issues, a regression model can be used which is weighted by the probability of not being censored. There is no unique model that can deal with all the problems, and the final choice depends on the type and design of the study. Missing data could reduce the representativeness of samples and therefore distort inferences about the population. So we summarised the methods of dealing with missing data in the reviewed studies. Also, we assessed whether cost calculations were adjusted for inflation or any other changes.
|