nif:isString
|
-
In order to make the Whitehall II neuroimaging sub-sample as representative as possible of the cohort at baseline, a random sample of 800 Whitehall II Phase 11 participants willing and able to give informed consent were invited to attend the imaging sub-study at the Oxford Centre for Functional MRI of the Brain (FMRIB). To achieve a sufficient number of participants with depression, we enriched the sample by 30 participants with depressive symptoms based on previous Whitehall II clinical examinations. We excluded participants with contraindications to MRI scanning (including but not limited to a history of claustrophobia, certain metallic implants and metallic injury to the eye), or who were unable to travel to Oxford without assistance. Data from 563 individuals aged 60 to 83 years that have been scanned prior to January 2016 were included in the analyses. Ethical approval for the Whitehall II study was obtained from the University College London Medical School committee on the ethics of human research and all participants provided written informed consent. Ethical approval for neuroimaging data acquisition was granted generically for the “Protocol for non-invasive magnetic resonance investigations in healthy volunteers” (MSD/IDREC/2010/P17.2) by the University of Oxford Central University/ Medical Science Division Interdisciplinary Research Ethics Committee (CUREC/ MSD-IDREC), who also approved the specific protocol: “Predicting MRI abnormalities with longitudinal data of the Whitehall II sub-study” (MSD-IDREC-C1-2011-71, PI: KPE). The Health Research Authority NRES Committee South Central—Oxford C approved the study: “Biological mechanisms and risk factors in late onset depression” (REC Reference: 10/H0606/71, PI: CLA) that allowed us to examine participants with a past history of depressive symptoms. The study follows the Medical Research Council (MRC) Policy on data sharing, i.e. images and other data will be available for analysis by other groups after completion of the study, as is the case with the Whitehall II study (see http://www.ucl.ac.uk/whitehallII/data-sharing).
Each participant recruited for the Whitehall II imaging sub-study underwent a detailed clinical and cognitive assessment lasting up to two hours. The clinical assessment consisted of a (A) self-administered questionnaire, a (B) semi-structured clinical interview and (C) cognitive assessment. For this study only a subset of the data was used, which is described here in more detail. For an overview of all assessments, please see [13]. - General Health Questionnaire-30 (GHQ-30 [14]): The GHQ-30 is a 30-item self-administered screening questionnaire for the detection of psychiatric illness in non-psychiatric clinical and community settings.- Montreal Cognitive Assessment (MoCA [15]): The MoCA is a 30-point cognitive screening test assessing multiple cognitive domains: visuo-spatial abilities, short-term memory recall, executive function, attention, orientation and working memory, language and orientation to time and space.- Centre for Epidemiological Studies Depression Scale (CES-D [16]): The CES-D is short self-report scale that measures major depressive symptomatology in the general population.- Test of Premorbid Functioning (TOPF [17]): The TOPF consists of a list of seventy written words, which must be read aloud and is marked according to pronunciation. The TOPF is used to estimate an individual's level of intellectual functioning before the onset of injury or illness. Premorbid IQ can be calculated from the raw score, adjusted for sex and years of education.- Structured Clinical Interview for DSM-IV-TR Axis I Disorders [18]: The SCID-I is a semi-structured interview for diagnosing current and past DSM-IV Axis I disorders and is administered by a trained graduate psychologist or psychiatrist.
DNA was extracted from whole blood samples (via magnetic bead technology; Medical Solutions, Nottingham, UK) and normalized to a concentration of 50 ng/μl. Participants were genotyped for two polymorphisms of the UCP2 gene, -866G>A (rs659366) and Ala55Val (rs660339) using SNPLex (Applied Biosciences, Inc., Warrington, United Kingdom) by Medical Solutions Plc (Nottingham, United Kingdom)[19].
A detailed description of the image acquisition protocols and pre-processing steps for neuroimaging data can be found in [13]. In brief, scanning was carried out at FMRIB using a 3 T Siemens Magnetom Verio (Erlangen, Germany) Scanner with a 32-channel receive head coil. The neuroimaging protocol comprised both structural and functional sequences and lasted approximately 50 minutes. The MRI sequences that were analyzed for this study included high-resolution T1-weighted MRI (multi-echo MPRAGE [20], TR = 2530 ms, TE = 1.79/3.65/5.51/7.37 ms, flip angle = 7°, field of view = 256 mm, voxel dimension = 1 mm isotropic, acquisition time = 6 min 12 s), diffusion MRI (dMRI) (TR = 8900 ms, TE = 91.2 ms, field of view = 192 mm, voxel dimension = 2 mm isotropic, B-value = 1500 s/mm2, gradients applied = 60 isotropically distributed diffusion-weighted directions with b-value = 1500 s/mm2, 5 non-diffusion weighted images, b-value 0s/mm2, with one b0 volume acquired in the reversed phase encoded direction, acquisition time = 9 min 56 s) and resting-state functional MRI (rsfMRI) (multiband echo-planar imaging, TR = 1300 ms, TE = 40 ms, flip angle = 66°, field of view = 212 mm, voxel dimension = 2 mm isotropic, acquisition time = 10 min 10 s). For the rsfMRI scan subjects were instructed to lie in dimmed light with their eyes open, blink normally, but not to fall asleep.
For neuroimaging data pre-processing we used standard FMRIB Software Library (FSL) tools v5.0 (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) [21]. A detailed description of the data pre-processing steps can be found in [13]. The pre-processing pipeline for T1-weighted images included: re-orientating images to the standard (MNI) template, bias field correction, registration to the MNI template using both linear (FLIRT) and non-linear (FNIRT) registration tools and brain extraction. Brain tissues were segmented using FMRIB's Automated Segmentation Tool (FAST) that allows extracting measures of total grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) [22]. Brain tissues and sub-cortical regions were visually inspected to ensure an accurate segmentation, and manually edited where necessary. The pre-processing pipeline for diffusion MRI data used a recently developed approach that simultaneously considers and corrects for susceptibility-induced distortions, eddy-currents and head motion, which is based on methods developed and applied to the Human Connectome Project (HCP) diffusion MRI data [23]. Fractional anisotropy (FA), mean diffusivity (MD), axial (DA) and radial diffusivity (DA) maps were generated using DTIFit, part of FMRIB’s Diffusion Toolbox, that fits a diffusion tensor model at each voxel [24]. Resting-state fMRI data pre-processing consisted of motion correction, brain extraction, high-pass temporal filtering with a cut-off of 100 s, and field-map correction and was carried out using FSL Multivariate Exploratory Linear Optimized Decomposition into Independent Components (MELODIC) [25]. To identify and regress out the “signal” of artefactual components reflecting non-neuronal fluctuations, we used single-subject independent component analysis (ICA) followed by an automatic component classification with FMRIB's ICA-based X-noiseifier (FIX) [26, 27]. The pre-processed and “cleaned” functional data was registered to the individual's structural scan and standard space images using FNIRT, then optimized using boundary-based-registration approach [28], and finally spatially smoothed using an isotropic Gaussian kernel of 6 mm full width at half maximum (FWHM).
For data analysis we used standard FSL tools v5.0. To study grey matter (GM) morphology, the T1-weighted structural imaging data were analysed using a voxel-based morphometry (VBM) approach. Whole-brain analysis was carried out with FSL-VBM [29], using default settings. FMRIB’s Integrated Registration and Segmentation Tool (FIRST [30]), an automated model-based segmentation/registration tool, was applied to extract volumes of sub-cortical GM structures. Volumes were normalized to total intracranial volume and imported into SPSS for further statistical analyses. White matter integrity (FA, MD, DA and DR) was analysed using FMRIB’s Diffusion Toolbox and tract-based spatial statistics (TBSS), a voxelwise approach for analysis of FA (and MD, DA, DR) data [31]. Functional connectivity was analysed using the FSL dual regression method [32]. Connectivity of 8 standard resting-state networks defined by a group ICA using MELODIC was analysed: the default-mode network, executive control network, two visual networks, the auditory and sensory-motor networks and left and right fronto-parietal networks [25]. For all image-based analyses (VBM, TBSS, dual regression) voxelwise general linear modelling (GLM) was applied using permutation nonparametric testing (5000 permutations) and P<0.05 correcting for multiple comparisons across space using threshold-free cluster enhancement (TFCE) [33]. Three UCP2 haplotype groups were compared in this model. Due to the significant effects of UCP2 polymorphisms on lifetime risk of mood disorders in men in this sample, we carried out two different analyses of the neuroimaging data. In the first analysis, all participants were included irrespective of sex and lifetime occurrence of mood disorder. One-way ANOVAs were performed to determine UCP2 haplotype group effects on imaging measures and post-hoc tests were performed to compare means between the three groups. In the second analysis, we only included male participants and investigated main effects of UCP2 haplotype and lifetime occurrence of mood disorders and their interaction on brain structure and function using a two-way ANOVA. Age was used as a covariate of no interest in all analyses.
We used SPSS software version 23 (SPSS Inc., Chicago, USA) for non-image-based statistical analyses and to compare volumes of subcortical structures. χ2 tests were used to compare allelic distributions and determine Hardy-Weinberg equilibrium as well as to compare categorical variables between the three UCP2 haplotype groups. Gene-dose effects were analyzed using Mantel-Haenszel linear-by-linear association χ2 tests. Linkage disequilibrium between the two UCP2 polymorphisms was determined using the online tool CubeX [34] (http://www.oege.org/software/cubex/). One-way ANOVAs and post-hoc tests with Bonferroni correction were used to compare continuous sociodemographic variables and subcortical volumes between haplotype groups. An alpha of P<0.05 was considered significant but adjusted for multiple comparison if necessary using Bonferroni correction (alpha was divided by the number of comparisons).
|