nif:isString
|
-
The experiment was approved by the local medical ethical committee (ECG, Nijmegen, The Netherlands). Parents with 5-year-old children (N = 24, 12 females, mean age 5.09, range 5.02–5.16) were recruited from a database of the Baby Research Center Nijmegen. The children’s parents provided written informed consent for participation of their children in the study, and all participants received a book or monetary compensation for their visit.
The game involves a Communicator (a 5-year-old participant, displayed as a bird on the game board) and an Addressee (the confederate, displayed as a squirrel) interacting on a digital game board with a 3×3 grid layout (see Figure 1A). On each trial, their joint goal was for the Addressee to collect an acorn from the game board. Given that knowledge of the acorn’s location in the game board was available to the Communicator only (on a printed copy of the game board, visible throughout the trial, see Figure 1A), a successful trial of this game required the Communicator to inform the Addressee where the acorn was located. Given the experimental setup, the Communicator could inform the Addressee only by moving the bird across the game board (event 2 in Figure 1B). The Addressee could then move the squirrel to the acorn’s location only by interpreting the meaning of the Communicator’s movements on the game board (event 3 in Figure 1B). For details on the experimental procedure see the Supplemental Material.
Figure data removed from full text. Figure identifier and caption: 10.1371/journal.pone.0072667.g001 Task setup. (A) The Communicator, a 5-year-old participant, sat next to an Experimenter who provided the task instructions and the trial-specific location of the acorn but played no part in the communicative game. The Addressee, a confederate who performed the role of a toddler and a child (see panel C), while remaining blind to which one of the two roles he was performing in any given trial, sat outside the experimental room facing another monitor. (B) Each single trial encompassed four successive events. (1) the Experimenter showed to the Communicator only the location of the acorn (see panel A), and the Communicator had unlimited time to plan the movements; (2) the Communicator moved the bird icon on the game board by touching a touch-screen with a finger (the movements of the bird were visible to both Communicator and Addressee); (3) the Addressee moved the squirrel icon on the game board with a digital mouse (the movements of the squirrel were visible to both Communicator and Addressee); (4) both players received common feedback on the communicative success of the trial. Note that the bird, unlike the squirrel which could move freely, could only move to the center of each of the nine grid squares, and only through vertical or horizontal displacements. This feature of the task made it difficult for the Communicator and the Addressee to discriminate the location of multiple potential targets within a square (the white circles) on the basis of the location of the bird alone. (C) A digital photograph of the current presumed addressee was presented to the Communicator in full screen before the onset of each block of 5 trials, and in the top right corner during each block.
By touching a square on the screen with his/her finger, the Communicator could move the bird token to that square, and this movement was also visible to the Addressee. The bird could only move to the center of each of the nine grid squares, and only through vertical or horizontal displacements. This feature of the task was introduced to create a spatial disparity between the movements of the bird and the potential locations of the target object (any of the thirteen white circles, see Figure 1B). Namely, the bird could not be overlaid on the precise location of the acorn when a square contained more than one white circle (see Manipulation of task difficulty of the Supplemental Material for details). The Communicator had no restrictions on planning time (event 1 in Figure 1B) or on movement time (event 2). The end of the movement epoch was marked by the return of the bird on the central square of the game board (nest). At this point, the token of the Addressee (the squirrel) appeared, in the center of the digital game board, visible to both players. The Addressee moved the squirrel to the location deemed appropriate given the movements of the Communicator (event 3). The Addressee had no temporal or spatial restrictions on the movements of the squirrel on the game board. Successful trials, in which the Addressee had moved to the location of the target, resulted in the presentation of a large acorn on the screen (event 4). A red “no” icon was presented over a small acorn for unsuccessful trials. There were a total of 50 trials, subdivided in blocks of five trials (∼35 min, Figure 1C). Each child was informed that he would be playing an interactive game with two addressees in turns; either a toddler (‘2-year-old’) or a same–age peer (‘5-year-old’). They were told that the game partners were sitting in other rooms and that they could see the bird token and the digital game board on their monitors. There were two pairs of fictitious child-toddler addressees, two presentation orders of child-toddler addressees, and two sets of target configurations, counterbalanced over participants.
Quantification of the Social Environment: Given that the extent and nature of the social interactions experienced by children is widely thought to influence the development of their social understanding [5], [7], [12], [13], we considered two main sources of social interactions experienced by children, namely familial and non-familial experiences, reconstructed from interviews with the parents of the children. Familial experiences were indexed with the parents’ level of education (11 levels, 7.4±1.6, group mean ± SD, range 4.5–10.5) and years of experience with siblings (i.e. the product of age and number of siblings: 4.3±3.4, range 0–15.2; number of siblings: 1.2±0.7, range 0–3). Non-familial experiences were indexed with the time spent at daycare (days per week) between the age of 0 and 4 (mean over these four years; 1.7±0.9 days per week, range 0.25–3). We did not consider between ages 4 and 5 given that in the Netherlands it is customary to start primary school at age 4.
Audio- and video-recordings of the participant’s behavior were analyzed offline. Those trials in which the child behavior revealed procedural uncertainties (e.g. failing to return to the nest within 15 seconds, or interrupting the bird movements to look at the location of the acorn in the instruction game board) were excluded, leaving 80.1±13.4% (mean ± SD) of the original trials for further analysis (∼40 trials; four participants interrupted their performance after 30 trials). This study builds on the findings of a previous report involving the same task and obtained in a group of women [21], showing that the communicator’s belief about age of the addressee changed communicative behavior. More precisely, these adults spent longer time on communicatively relevant locations of the game board when interacting with a presumed child addressee (vs. an adult addressee), i.e. using time as a tool to place emphasis on target information. The first goal of this study was to replicate this finding in a group of five-year-old children. Accordingly, we considered the same dependent variable (namely, Time spent on game board locations), using the same statistical comparison, namely a two-way ANOVA with factors Addressee (Toddler, Child) and Location (Target, Non-target). The Time spent on game board location by the Communicator was calculated as the time interval between the first contact of the finger on the touch screen within the area of a square of the game board (either a Target or a Non-target location) and the subsequent contact of the finger within the area of a neighboring square of the game board. We considered the mean time spent on those location types per trial. It should be emphasized that, given the absence of temporal restrictions on the total time the children could spend on the game board, the time spent on target locations and the time spent on non-target locations could vary independently. Having replicated the findings of [21] in this group of five year-olds (Figure 2), we used a multiple linear regression analysis to assess the differential contribution of familial and non-familial sources of social interactions experienced by these children in the first four years of their life. These three independent variables (i.e. parents’ level of education, years of experience with siblings, and time spent at daycare, see above) were jointly considered in the multiple regression analysis, with the degree of communicative adjustment observed in each child as dependent variable (i.e. the relative difference, [toddler – child]/[child], in time spent on Target locations between presumed toddler and child Addressee). This statistical approach allows one to make specific inferences on the inter-subject variance accounted for one variable, over and above the variance accounted by the other variables included in the multiple regression model.
Figure data removed from full text. Figure identifier and caption: 10.1371/journal.pone.0072667.g002 Communicative adjustments.Time spent on Target and Non-target locations (during event 2 in Figure 1B; mean ± SEM; average time per trial) by the participants as a function of presumed Addressee (Toddler, Child).
|