gris-publication-1h8psq8f95o8
at
GESISKG
https://data.gesis.org/gesiskg/resource/gris-publication-1h8psq8f95o8
Property
Value
?:
contributor
<
https://data.gesis.org/gesiskg/resource/gris-publication-1h8psq8f95o8_Benjamin_Zapilko
>
<
https://data.gesis.org/gesiskg/resource/gris-publication-1h8psq8f95o8_Daniel_Bahls
>
<
https://data.gesis.org/gesiskg/resource/gris-publication-1h8psq8f95o8_Klaus_Tochtermann
>
?:
dateModified
2014
(xsd:gyear)
?:
datePublished
2014
(xsd:gyear)
is
?:
hasPart
of
<
https://data.gesis.org/gesiskg/resource/
>
is
?:
mainEntity
of
<
https://data.gesis.org/gesiskg/resource/duplicate_gesis-bib-112765_gris-publication-1h8psq8f95o8
>
?:
name
A data restore model for reproducibility in computational statistics
(xsd:string)
?:
publicationType
inproceedings
(xsd:string)
?:
sourceInfo
GESIS-GRIS
(xsd:string)
In i-Know '13: Proceedings of the 13th International Conference on Knowledge Management and Knowledge Technologies, edited by Stefanie Lindstaedt, Michael Granitzer, 13:1--13:8, ACM, New York, 2014
(xsd:string)
rdf:
type
<
https://schema.org/ScholarlyArticle
>