PropertyValue
?:abstract
  • Open science practices have been widely discussed and have been implemented with varying success in different disciplines. We argue that computational-x disciplines such as computational social science, are also susceptible to the symptoms of the crises, but in terms of reproducibility. We expand the binary definition of reproducibility into a tier system which allows increasing levels of reproducibility based on external verifiability to counteract the practice of open-washing. We provide solutions for barriers in Computational Social Science that hinder researchers from obtaining the highest level of reproducibility, including the use of alternate data sources and considering reproducibility proactively. (xsd:string)
?:citation
?:contributor
?:dateModified
  • 2024 (xsd:gyear)
?:datePublished
  • 2024 (xsd:gyear)
?:doi
  • epjds/s13688-024-00514-w ()
?:duplicate
?:hasFulltext
  • true (xsd:boolean)
is ?:hasPart of
?:inLanguage
  • en (xsd:string)
?:isPartOf
?:issn
  • 2193-1127 ()
?:linksDOI
is ?:mainEntity of
?:name
  • Computational reproducibility in computational social science (xsd:string)
?:provider
?:publicationType
  • Zeitschriftenartikel (xsd:string)
  • journal_article (en)
?:reference
?:sourceInfo
  • GESIS-SSOAR (xsd:string)
  • In: EPJ Data Science, 13, 2024 (xsd:string)
rdf:type
?:url
?:volumeNumber
  • 13 (xsd:string)