PropertyValue
?:about
?:abstract
  • Während in den quantitativen Sozialwissenschaften Umfragedaten seit jeher das Herzstück der Informationsgewinnung bilden, spielten Beobachtungsdaten und andere Datenquellen eine eher untergeordnete Rolle. Soziale Medien und mobile Endgeräte lassen nun digitale Verhaltensdaten immer mehr in den Mittelpunkt sozialwissenschaftlicher Forschung rücken. Doch selbst die innovativsten und umfangreichsten Datenmengen sind unzureichend, wenn sie nicht von hoher Qualität sind. Dieser Artikel diskutiert anhand eingängiger Beispiele die grundlegenden Herausforderungen bei der Analyse digitaler Verhaltensdaten und präsentiert einen zentralen Ansatz zur Evaluation ihrer Qualität. (xsd:string)
?:contributor
?:dateModified
  • 2023 (xsd:gyear)
?:datePublished
  • 2023 (xsd:gyear)
?:doi
  • 10.15464/easy.2023.03 ()
?:duplicate
?:hasFulltext
  • true (xsd:boolean)
is ?:hasPart of
?:inLanguage
  • de (xsd:string)
?:isPartOf
?:issn
  • 2199-9082 ()
?:issueNumber
  • 68 (xsd:string)
?:linksDOI
is ?:mainEntity of
?:name
  • Garbage in - Garbage out? Datenqualität im Umgang mit digitalen Verhaltensdaten (xsd:string)
?:provider
?:publicationType
  • Zeitschriftenartikel (xsd:string)
  • journal_article (en)
?:sourceInfo
  • GESIS-SSOAR (xsd:string)
  • In: easy_social_sciences, 2023, 68, 21-30 (xsd:string)
rdf:type
?:url