PropertyValue
?:about
?:abstract
  • Complex interactive test items are becoming more widely used in assessments. Being computer-administered, assessments using interactive items allow logging time-stamped action sequences. These sequences pose a rich source of information that may facilitate investigating how examinees approach an item and arrive at their given response. There is a rich body of research leveraging action sequence data for investigating examinees’ behavior. However, the associated timing data have been considered mainly on the item-level, if at all. Considering timing data on the action-level in addition to action sequences, however, has vast potential to support a more fine-grained assessment of examinees’ behavior. We provide an approach that jointly considers action sequences and action-level times for identifying common response processes. In doing so, we integrate tools from clickstream analyses and graph-modeled data clustering with psychometrics. In our approach, we (a) provide similarity measures that are based on both actions and the associated action-level timing data and (b) subsequently employ cluster edge deletion for identifying homogeneous, interpretable, well-separated groups of action patterns, each describing a common response process. Guidelines on how to apply the approach are provided. The approach and its utility are illustrated on a complex problem-solving item from PIAAC 2012. (xsd:string)
?:contributor
?:dateModified
  • 2021 (xsd:gyear)
?:datePublished
  • 2021 (xsd:gyear)
?:doi
  • 10.1007/s11336-020-09743-0 ()
?:duplicate
?:hasFulltext
  • true (xsd:boolean)
is ?:hasPart of
?:inLanguage
  • en (xsd:string)
?:isPartOf
?:issn
  • 1860-0980 ()
?:issueNumber
  • 1 (xsd:string)
?:linksDOI
?:linksURN
is ?:mainEntity of
?:name
  • Combining Clickstream Analyses and Graph-Modeled Data Clustering for Identifying Common Response Processes (xsd:string)
?:provider
?:publicationType
  • Zeitschriftenartikel (xsd:string)
  • journal_article (en)
?:reference
?:sourceInfo
  • GESIS-SSOAR (xsd:string)
  • In: Psychometrika, 86, 2021, 1, 190-214 (xsd:string)
rdf:type
?:url
?:urn
  • urn:nbn:de:0168-ssoar-85084-7 ()
?:volumeNumber
  • 86 (xsd:string)