PropertyValue
?:about
?:abstract
  • Two modified Portmanteau statistics are studied under dependence assumptions common in financial applications which can be used for testing that heteroskedastic time series are serially uncorrelated without assuming independence or Normality. Their asymptotic distribution is found to be null and their small sample properties are examined via Monte Carlo. The power of the tests is studied under the MA and GARCH-in-mean alternatives. The tests exhibit an appropriate empirical size and are seen to be more powerful than a robust Box-Pierce to the selected alternatives. Real data on daily stock returns and exchange rates is used to illustrate the tests. (xsd:string)
?:contributor
?:dateModified
  • 2020 (xsd:gyear)
?:datePublished
  • 2020 (xsd:gyear)
?:doi
  • 10.30878/ces.v27n3a6 ()
?:duplicate
?:hasFulltext
  • true (xsd:boolean)
is ?:hasPart of
?:inLanguage
  • en (xsd:string)
?:isPartOf
?:issn
  • 2395-8782 ()
?:issueNumber
  • 3 (xsd:string)
?:linksDOI
?:linksURN
is ?:mainEntity of
?:name
  • Testing financial time series for autocorrelation: Robust Tests (xsd:string)
?:provider
?:publicationType
  • Zeitschriftenartikel (xsd:string)
  • journal_article (en)
?:sourceInfo
  • GESIS-SSOAR (xsd:string)
  • In: CIENCIA ergo-sum : revista científica multidisciplinaria de la Universidad Autónoma del Estado de México, 27, 2020, 3, 376-391 (xsd:string)
rdf:type
?:url
?:urn
  • urn:nbn:de:0168-ssoar-71214-9 ()
?:volumeNumber
  • 27 (xsd:string)