gesis-bib-145749
at
GESISKG
https://data.gesis.org/gesiskg/resource/gesis-bib-145749
Property
Value
?:
about
<
https://data.gesis.org/gesiskg/resource/Zeitschriftenartikel
>
?:
author
<
https://data.gesis.org/gesiskg/resource/gesis-bib-145749_Betancourt_Garcia_Maria_Elena
>
<
https://data.gesis.org/gesiskg/resource/gesis-bib-145749_Molinet_Berenguer_Jos%C3%A9_Antonio
>
<
https://data.gesis.org/gesiskg/resource/gesis-bib-145749_Molinet_Berenguer_Tom%C3%A1s
>
<
https://data.gesis.org/gesiskg/resource/gesis-bib-145749_Montano_Moreno_Juan_Jos%C3%A9
>
<
https://data.gesis.org/gesiskg/resource/gesis-bib-145749_Palmer_Pol_Alfonso
>
?:
contributor
<
https://data.gesis.org/gesiskg/resource/gesis-bib-145749_Betancourt_Garcia_Maria_Elena
>
<
https://data.gesis.org/gesiskg/resource/gesis-bib-145749_Molinet_Berenguer_Jos%C3%A9_Antonio
>
<
https://data.gesis.org/gesiskg/resource/gesis-bib-145749_Molinet_Berenguer_Tom%C3%A1s
>
<
https://data.gesis.org/gesiskg/resource/gesis-bib-145749_Montano_Moreno_Juan_Jos%C3%A9
>
<
https://data.gesis.org/gesiskg/resource/gesis-bib-145749_Palmer_Pol_Alfonso
>
?:
duplicate
<
https://data.gesis.org/gesiskg/resource/duplicate_gesis-bib-145749_gesis-bib-145749
>
?:
hasFulltext
false
(xsd:boolean)
is
?:
hasPart
of
<
https://data.gesis.org/gesiskg/resource/
>
?:
inLanguage
Englisch (EN)
(xsd:string)
?:
isPartOf
<
https://data.gesis.org/gesiskg/resource/Methodology
>
?:
libraryLocation
<
https://data.gesis.org/gesiskg/resource/K%C3%B6ln_Zeitschriftenaufsatz
>
is
?:
mainEntity
of
<
https://data.gesis.org/gesiskg/resource/duplicate_gesis-bib-145749_gesis-bib-145749
>
?:
name
Models of artificial neural networks applied to demand forecasting in nonconsolidated tourist destinations
(xsd:string)
?:
provider
GESIS - Bibliothek
(
)
<
https://data.gesis.org/gesiskg/resource/GESIS
>
?:
publicationType
Monographie
(xsd:string)
Zeitschriftenaufsatz
(de)
journal_article
(en)
?:
sourceInfo
GESIS-BIB
(xsd:string)
In: Methodology, vol. 11(2015) no. 2 ; p. 35-44. ISSN 1614-1881
(xsd:string)
rdf:
type
<
https://schema.org/ScholarlyArticle
>