PropertyValue
?:about
?:abstract
  • 1 Introduction to statistical data editing and imputation.; 1.1 Introduction.; 1.2 Statistical data editing and imputation in the statistical process.; 1.3 Data, errors, missing data and edits.; 1.4 Basic methods for statistical data editing and imputation.; 1.5 An edit and imputation strategy.; 2 Methods for deductive correction.; 2.1 Introduction.; 2.2 Theory and applications.; 2.3 Examples.; 2.4 Summary.; 3 Automatic editing of continuous data.; 3.1 Introduction.; 3.2 Automatic error localisation of random errors.; 3.3 Aspects of the Fellegi-Holt paradigm.; 3.4 Algorithms based on the Fellegi-Holt paradigm.; 3.5 Summary.; 4 Automatic editing: extensions to categorical data.; 4.1 Introduction.; 4.2 The error localisation problem for mixed data.; 4.3 The Fellegi-Holt approach.; 4.4 A branch-and-bound algorithm for automatic editing of mixed data.; 4.5 The Nearest-neighbour Imputation Methodology.; 5 Automatic editing: extensions to integer data.; 5.1 Introduction.; 5.2 An illustration of the error localisation problem for integer data.; 5.3 Fourier-Motzkin elimination in integer data.; 5.4 Error localisation in categorical, continuous and integer data.; 5.5 A heuristic procedure.; 5.6 Computational results.; 5.7 Discussion.; 6 Selective editing.; 6.1 Introduction.; 6.2 Historical notes.; 6.3 Micro-selection: the score function approach.; 6.4 Selection at macro-level.; 6.5 Interactive editing.; 6.6 Summary and conclusions.; 7 Imputation.; 7.1 Introduction.; 7.2 General issues in applying imputation methods.; 7.3 Regression imputation.; 7.4 Ratio imputation.; 7.5 (Group) mean imputation.; 7.6 Hot deck donor imputation.; 7.7 A general imputation model.; 7.8 Imputation of longitudinal data.; 7.9 Approaches to variance estimation with imputed data.; 7.10 Fractional imputation.; 8 Multivariate imputation.; 8.1 Introduction.; 8.2 Multivariate imputation models.; 8.3 Maximum likelihood estimation in the presence of missing data.; 8.4 Example: the public libraries.; 9 Imputation under edit constraints.; 9.1 Introduction.; 9.2 Deductive imputation.; 9.3 The ratio hot deck method.; 9.4 Imputing from a Dirichlet distribution.; 9.5 Imputing from a singular normal distribution.; 9.6 An imputation approach based on Fourier-Motzkin elimination.; 9.7 A sequential regression approach.; 9.8 Calibrated imputation of numerical data under linear edit restrictions.; 9.9 Calibrated hot deck imputation subject to edit restrictions.; 10 Adjustment of imputed data.; 10.1 Introduction.; 10.2 Adjustment of numerical variables.; 10.3 Adjustment of mixed continuous and categorical data.; 11 Practical applications.; 11.1 Introduction.; 11.2 Automatic editing of environmental costs.; 11.3 The EUREDIT project: an evaluation study.; 11.4 Selective editing in the Dutch Agricultural Census. (xsd:string)
?:author
?:contributor
?:dateModified
  • 2011 (xsd:gyear)
?:datePublished
  • 2011 (xsd:gyear)
?:duplicate
?:hasFulltext
  • false (xsd:boolean)
is ?:hasPart of
?:inLanguage
  • Englisch (EN) (xsd:string)
?:isPartOf
?:isbn
  • 9780470542804 ()
?:libraryLocation
is ?:mainEntity of
?:name
  • Handbook of statistical data editing and imputation (xsd:string)
?:provider
?:publicationType
  • Buch (de)
  • Monographie (xsd:string)
  • book (en)
?:publisher
?:sourceInfo
  • GESIS-BIB (xsd:string)
  • Oxford: Wiley, 2011.- xi, 439 p., ill. (xsd:string)
rdf:type