PropertyValue
?:abstract
  • Principal component analysis and correspondence analysis are both methods of dimension reduction and visualization of data tables. Although they apply to different types of data, there are cases where they have similar results and sometimes even identical results. This chapter explores some relationships between the two methods. (xsd:string)
?:author
?:comment
  • (ISSP) (xsd:string)
?:dataSource
  • ISSP-Bibliography (xsd:string)
?:dateModified
  • 2023 (xsd:gyear)
?:datePublished
  • 2023 (xsd:gyear)
?:doi
  • 10.3224/84742764 ()
?:duplicate
?:editor
?:fromPage
  • 13 (xsd:string)
is ?:hasPart of
?:inLanguage
  • english (xsd:string)
is ?:mainEntity of
?:name
  • (P)CA (xsd:string)
?:publicationType
  • incollection (xsd:string)
?:publisher
?:reference
?:sourceCollection
  • Multivariate Scaling Methods and the Reconstruction of Social Spaces: Papers in Honor of Jörg Blasius (xsd:string)
?:sourceInfo
  • Bibsonomy (xsd:string)
  • In Multivariate Scaling Methods and the Reconstruction of Social Spaces: Papers in Honor of Jörg Blasius, edited by Barth, Alice and Leßke, Felix and Atakan, Rebekka and Schmidt, Manuela and Scheit, Yvonne, 13-28, Barbara Budrich, 2023 (xsd:string)
?:studyGroup
  • International Social Survey Programme (ISSP) (xsd:string)
?:tags
  • 2023 (xsd:string)
  • FDZ_IUP (xsd:string)
  • ISSP (xsd:string)
  • ISSP_input2023 (xsd:string)
  • ISSP_pro (xsd:string)
  • english (xsd:string)
  • incollection (xsd:string)
  • jak (xsd:string)
  • transfer23 (xsd:string)
?:toPage
  • 28 (xsd:string)
rdf:type
?:url