PropertyValue
?:abstract
  • The chapter focuses on the modelling and analysis of spatial dependent two-factorial compositional data. Spatial statistics provides a wide range of methods for the analysis of data with local variations but only a few of them are accommodated for the purposes of modelling relative structures. In this chapter, the geographically weighted regression model is introduced to analyse the relationship between the dependent variable and an explanatory variable reflecting a structure expressed in terms of a compositional table. The methodology is motivated by the problem of modelling local variations of the relationship between at-risk-of-poverty rates and the structure of the highest attained educational level in the German population aged 30--34. The real data study shows how information included in a compositional table and further expressed in real-valued coordinates can be highly valuable in selecting variables and prioritising them with respect to a research interest to facilitate the final interpretation of the model. (xsd:string)
?:author
?:comment
  • (SILC) (LFS) (xsd:string)
?:dataSource
  • EU-LFS-Bibliography (xsd:string)
  • EU-SILC-Bibliography (xsd:string)
?:dateModified
  • 2021 (xsd:gyear)
?:datePublished
  • 2021 (xsd:gyear)
?:doi
  • 10.1007/978-3-030-71175-7_6 ()
?:duplicate
?:editor
?:fromPage
  • 103 (xsd:string)
is ?:hasPart of
?:inLanguage
  • english (xsd:string)
?:isbn
  • 978-3-030-71175-7 ()
is ?:mainEntity of
?:name
  • Geographically Weighted Regression Analysis for Two-Factorial Compositional Data (xsd:string)
?:publicationType
  • incollection (xsd:string)
?:publisher
?:reference
?:sourceCollection
  • Advances in Compositional Data Analysis: Festschrift in Honour of Vera Pawlowsky-Glahn (xsd:string)
?:sourceInfo
  • Bibsonomy (xsd:string)
  • In Advances in Compositional Data Analysis: Festschrift in Honour of Vera Pawlowsky-Glahn, edited by Filzmoser, Peter and Hron, Karel and Martín-Fernández, Josep Antoni and Palarea-Albaladejo, Javier, 103-124, Springer International Publishing, 2021 (xsd:string)
?:studyGroup
  • European Union Labour Force Survey (EU-LFS) (xsd:string)
  • European Union Statistics on Income and Living Conditions (EU-SILC) (xsd:string)
?:tags
  • 2021 (xsd:string)
  • FDZ_GML (xsd:string)
  • LFS (xsd:string)
  • LFS_input2021 (xsd:string)
  • LFS_pro (xsd:string)
  • SILC (xsd:string)
  • SILC_input2021 (xsd:string)
  • SILC_pro (xsd:string)
  • datfeld (xsd:string)
  • english (xsd:string)
  • incollection (xsd:string)
  • jak (xsd:string)
  • rp (xsd:string)
  • transfer21 (xsd:string)
  • vttrans (xsd:string)
?:toPage
  • 124 (xsd:string)
rdf:type
?:url