PropertyValue
?:abstract
  • We propose a new measure of national valence based on the emotional content of a country’s most popular songs. We first trained a machine learning model using 191 different audio features embedded within music and use this model to construct a long-run valence index for the UK. This index correlates strongly and significantly with survey-based life satisfaction and outperforms an equivalent text-based measure. Our methods have the potential to be applied widely and to provide a solution to the severe lack of historical time-series data on psychological well-being. (xsd:string)
?:author
?:citeIdentifier
  • Benetos2022 (xsd:string)
?:comment
  • (Eurobarometer) (xsd:string)
?:dataSource
  • Eurobarometer-Bibliography (xsd:string)
?:dateModified
  • 2022 (xsd:gyear)
?:datePublished
  • 2022 (xsd:gyear)
?:doi
  • 10.3758/s13428-021-01747-7 ()
?:duplicate
?:fromPage
  • 3085–3092 (xsd:string)
is ?:hasPart of
?:inLanguage
  • english (xsd:string)
?:isPartOf
?:issn
  • 15543528 ()
is ?:mainEntity of
?:name
  • Measuring national mood with music: using machine learning to construct a measure of national valence from audio data (xsd:string)
?:publicationType
  • article (xsd:string)
?:sourceInfo
  • Bibsonomy (xsd:string)
  • In Behavior Research Methods, 54, 3085–3092, 2022 (xsd:string)
?:studyGroup
  • EB - Standard and Special Eurobarometer (xsd:string)
?:tags
  • 2022 (xsd:string)
  • EB_contra (xsd:string)
  • EB_input2000 (xsd:string)
  • Eurobarometer (xsd:string)
  • FDZ_IUP (xsd:string)
  • article (xsd:string)
  • english (xsd:string)
  • evaliup (xsd:string)
  • mmh (xsd:string)
  • rp (xsd:string)
?:toPage
  • 3085–3092 (xsd:string)
rdf:type
?:url
?:volumeNumber
  • 54 (xsd:string)