

TeleScope: A Longitudinal Dataset for Investigating Online Discourse and Information Interaction on Telegram

Susmita Gangopadhyay, Danilo Dessì, Dimitar Dimitrov, Stefan Dietze

1. Motivation and Problem Statement

- Telegram is a widely used messaging platform renowned for its privacy and social features.
- Telegram channels can influence public opinion and contribute to the spread of misinformation.
- X/Twitter API restrictions highlight the need for alternative social media data sources.

Problem: How do we enable years of X/Twitter research to be replicated on Telegram?

2. X/Twitter vs. Telegram TeleScope: A Longitudinal Dataset for Investigating Online Discourse and Message Reactions Views **Comments** Retweet

4. TeleScope Dataset

4.2 Enrichments

Feature	Value
Total Number of	31,227,109
Messages	
Number of unique	308,147
messages	
Smallest message flow	2
Longest message flow	4,810
Average message flow	2,54

1145313737 m_0, m_1, m_2 1000015666 M_{essages} Channel Channel Channel 1222580174 Messages Channel **1375981076**

Language 82.29 Ru Uk 4.6 En Fa 2.2 De 1.1 0.08 **Cannot Determine** 5.53 Others

30000 20000 00000 npt

Propagation statistics of forwarded messages

Channel-to-channel graph

Language distribution among downloaded public channels

Telegram entities: Top 10 hashtags in messages

Hashtags

5. Use Cases

6. Conclusion and Future Work

- Regular yearly TeleScope releases.
- Focused crawls, i.e., elections, climate change, migration.
- Estimating representativity, i.e., amount and type of channels covered.

